Bletchley Park

Never in the field of human conflict was so much owed by so many to so few

When Winston Churchill said that, in 1940, referring to the efforts of the RAF pilots fighting the Battle of Britain, the Government Code and Cypher School (GC&CS) operation going on at Bletchley Park wasn’t at full speed yet, and it would remain a top secret endeavor for decades. Otherwise, Sir Winston Churchill’s words might very well have been dedicated to the thousands of people who worked there, from 1939, to break the codes the German armies used in their communications during World War II.

Bletchley Park's main building

Bletchley Park’s main building

Even before the beginning of the war, the British were well aware that breaking the German codes was a vital need to win the probably approaching conflict, so they decided to set up GC&CS. Its physical location needed to be, at the same time, far away from any possible strategic objectives for German bombing raids and well connected both to London and Oxford and Cambridge, which would provide GC&CS’s most vital prime material: human intellect. From a handful of possible locations, Bletchley Park was chosen and GC&CS was set up there in the summer of 1939, days before the beginning of WWII.

Enigma machines and Alan Turing’s bombe

For almost twenty years Germany, and other countries, had been using Enigma machines for their encrypted communications. This had led to efforts to break their encryption scheme, most notably by Polish cryptologists Marian Rejewski, Jerzy Różycki and Henryk Zygalski, who were successful at it, and this, in turn, led to an arms race between code makers adding layers of complexity to Enigma and code breakers finding more sophisticated ways to break the codes. While original Enigma machines were commercially available and, thus, any code breaker could have access to one and learn exactly how it worked, subsequent military use machines were kept secret, which made the code breakers job even more difficult. Original Enigma ciphers were hard to break because they had a very long period (much longer than the messages that were sent with it) and could be set up in hundreds of thousands of different configurations. But after a few evolutions, military machines were able of more than 15·1018 configurations and up to 18·1019 by the end of the conflict.

In 1938 the Polish had built the bomba kryptologiczna, a mechanical computing device that exploited some weaknesses in the Enigma encrypting algorithm to decode the messages. In 1939, Alan Turing designed an evolution of it (with crucial improvements by Gordon Welchman) at Bletchley Park which would be called the Bombe and would be used to discover the settings employed by Enigma machines, that were changed daily. Both the bomba and the bombe were essentially an aggregation of Enigma machines. Enigma operators fed the machine with captured ciphered messages and plain text they suspected to be part of the message (such as the German word Wetterbericht, ‘weather report’). The bombe would then very quickly run through the possible Enigma settings, discarding all impossible combinations and, hopefully, delivering the correct solution.

Lorenz Machines and Colossus

Enigma wasn’t the only machine used by Germany to cipher their communications: from 1941 Lorenz machines were also used, further adding complication to British cryptographers’ jobs. It must be said that, as is often the case in cryptography, while the development of algorithms and advances in mathematics were vital to break the code, sloppiness by Lorenz machine operators was also essential: on August 30, 1941, a communication error with a specially long message led to a (somehow lazy) Lorenz machine operator to resend the message using exactly the same settings (something that was strictly forbidden). Furthermore, he didn’t send precisely the same message: probably in haste, he used some abbreviations. Finally, the codebreakers had been alerted that there was going to be a very long message resent, so they were paying special attention. One can only guess at their delight when they saw that the initial few characters were exactly the same as in the previous communication (suggesting the machine was on the same configuration) and, then, some variation that suggested the use of abbreviations, which would provide a displacement of parts of a (very long) message, which provided an ideal working ground for cryptographers. The two coded messages were studied for a long time. Three months later, the code still unbroken, it was given to mathematician and cryptanalyst Bill Tutte, who painstakingly and brilliantly applied a number of cryptanalysis techniques until he was able to completely reverse engineer the workings of the Lorenz machines (that no British codebreaker had ever seen), in one of the greatest achievements of the Allied war effort. But knowledge of the inner workings of the machine was only the first step in breaking the code. (You can read Tutte’s recall of the story in the linked PDF.)

Reconstructed Colossus computer

The rebuilt Colossus at the National Museum of Computing

A number of electromechanical devices were built to play the role of the bombe in analyzing and breaking Lorenz machine-coded communications (most notably, the ones called ‘Robinsons’), applying statistical methods developed by Bill Tutte. But the sophistication of the code made this task very slow on that class of devices, and led some at Bletchley Park to consider the nascent technology of vacuum tubes to improve on the machines. This led to the creation of Colossus, the world’s first electronic digital computer, designed by engineer Tommy Flowers. The vacuum tube technology Colossus was based on was extremely fragile, and the computer contained 1,500 (in its first, Mk I, incarnation) and 2,400 (for Mk II) of them, which were especially in danger when the machine was turned on, so Colossus computers were slowly powered on and then kept working continuously for their entire operational life. While being credited as the first electronic digital computer, Colossus wasn’t without its limitations: it didn’t have the capacity to store programs internally (its operators had to modify the wiring using plugs and switches) and it wasn’t a general-purpose machine, and was ‘only’ capable of a limited set of tasks. That limitation, though, also made Colossus extremely fast at what it did: it would take a personal computer from the 80s (40 years after the birth of Colossus) to perform the same calculations ‘at Colossus speed’.

The workers of Bletchley Park

For all of its might and historical relevance, Colossus was basically unknown to the world until the end of the 20th century: everything that hapenned at Bletchley Park was top secret, and although thousands of people worked there, it remained so for decades.

Alan Turing, and to a much lesser degree the already mentioned Gordon Welchman, Bill Tutte, and Tommy Flowers, and a number of others, such as “Dilly” Knox, Alastair Denniston, John Tiltman or Max Newman, are the starring characters in Bletchley Park’s history, but up to twelve thousand people worked there at some point, many of them mathematicians, scientists and engineers recruited from British universities and young women employed in administrative and clerical tasks, plus a significant contingent from the Women’s Royal Naval Service (more than 80% of the people who worked at Bletchley Park were women). It is a tribute to British character that more than twelve thousand people could keep it absolutely secret for such a lengthy time.

Visiting Bletchley Park

One of the features that made Bletchley Park an attractive site for CG&CS was its proximity to a train station connecting it to London, Oxford and Cambridge. The Oxford and Cambridge line was closed decades ago, but the London line is still open and Bletchley Park is a 45 minute ride away from London Euston station. Bletchley Park currently houses the Bletchley Park Museum and the National Museum of Computing. Admission to Bletchley Park is £15.00. A multimedia guide is included in the price, but we would encourage anyone visiting to take advantage of the one hour guided walking tours by any of the volunteer guides. And while at Bletchley Park, not visiting the rebuilt Colossus exhibition at the National Museum of Computing (£2.00) would be an unforgivable mistake.

Publicat dins de Uncategorized | Deixa un comentari

Alan Turing: a too short biography for such great man

Foto de una estatua de Alan Turing

Alan Turin’s statue at Bletchley Park. Photo (c) MariaJo Cabrera, with permission

Passion for Science

Alan Turing was born on 23 June 1912 in London, in an upper-middle-class family. He was he second child of Julius and Sara Turing, who had met in India. He had an elder brother, John, with whom he shared childhood in England, affected by the rigid education of their class and the absence of his parents, who stayed in India until his father’s retirement in 1926. Although some people in his family had a relation with the scientific world, the story of Alan Turing is one of an autonomous and free mind. Science was a passion for him, first shown in early chemistry experiments.

In 1928, in Sherborne School, he met another very intelligent boy, Christopher Morcom, with whom Alan shared a crucial period of intellectual companionship, until Morcom’s sudden death in 1930. Turing lived then a long crisis, in which he went into the question of how the human mind, and Christopher’s mind in particular, was embodied in matter. This led him into physics and quantum-mechanical theory, looking for an answer on the traditional problem of mind and matter. In 1931 he entered King’s College, in Cambridge, which was to him a whole world encouraging more free thought. It seems that the reading, in 1932, of von Neumann’s work on the logical foundations of quantum mechanics was his initiation to rigorous intellectual enquiry. At that time, too, his homosexuality became a part of his identity.

Progress in Mathematical Logic

Turing’s course for a successful career in pure mathematics seemed assured with a distinguished degree in 1934 followed by a Fellowship at King’s College in 1935 and Smith’s Prize in 1936 for his work on probability theory. However, his powerful mind drove him into a very different direction. By 1933 Turing had already introduced himself to the new area of mathematical logic, which was proclaimed as the foundation for mathematical truth by Bertrand Russell. At the moment, there were many questions about truth being captured by any formalism. In particular, in 1931 Gödel had proved the incompleteness of mathematics, with his famous theorem, showing the existence of true statements about numbers which could not be proved by any formal logical theory.

In 1935, Turing learnt that the question of Decidability, the Entscheidungsproblem, still lay open: could there exist a definite method or process by which it could be decided whether any given mathematical assertion was provable? Turing gives a negative answer by providing a definition of ‘definite method’, in modern language, an algorithm. He analysed what are the characteristics of a methodical process, how to perform that process ‘mechanically’, and he expressed all this in terms of a theoretical machine able to perform defined elementary operations on symbols on a paper tape. The correspondence between logical operations, the action of the human mind, and a machine which could be embodied in a practical physical form, was Turing’s definitive contribution.

The Birth of Computing

In April 1936 he showed his result to Von Neuman, but the parallel work of the American logician Alonzo Church, and the powerful logical school around him at Princeton University, became known first, and Turing was robbed of the full reward for his originality. Turing’s paper about his result, On Computable Numbers with an Application to the Entscheidungsproblem (PDF), was not published until August 1936. However, Turing’s approach was original and different from Church’s, based on building a bridge between the logical and the physical worlds. Eventually, the concept of the Universal Turing Machine (a single machine which can be used to perform any well-defined task by being supplied with the appropriate program) has become the foundation of the modern theory of computation.

After that, from September 1936, Turing spent two years at Princeton University, as a graduate student. He worked on showing that his definition of computability coincided with that of Church; and on his Ph.D. thesis under Church’s supervision, Systems on Logics Based on Ordinals, an extension of his ideas. In 1938 Turing was offered a temporary post at Princeton but instead returned to Cambridge. In 1938-39 he lived on his King’s College fellowship as logician and number theorist. He had no University lectureship. Unusually for a mathematician, he attended Wittgenstein‘s classes on the philosophy of mathematics, on the one hand, and he engineered gear-wheel parts for a special machine to calculate the Riemann Zeta function, on the other.

Upon British declaration of war, Turing took up full-time work at the wartime cryptanalytic headquarters, Bletchley Park. Here again Turing’s statistical ideas and his own concept of the universal machine in conjunction with large-scale electronic machinery came to have momentous consequences, as we will explain in this space in the future.

In 1944, Alan Turing was almost the only one in possession of real motivation for the modern computer, a single machine capable of handling any programmed task. He planned the embodiment of the Universal Turing Machine in electronic form, or in effect, invented the digital computer. Turing’s design, the Automatic Computing Engine, or ACE, was approved in early 1946 at the National Physical Laboratory. In 1947 his Abbreviated Code Instructions was one of the earliest developments of a programming language. But not a single component of the ACE was assembled. He found himself deeply frustrating for this lack of cooperation, very different from the wartime spirit at Bletchley Park.

In October 1947 Turing went back to Cambridge. Instead of publishing his fundamental principles of computing, mathematics or technology, he spent his time on neurology and physiology. Turing was never secretive about his sexual orientation, but in Cambridge he became more explicit, and a mathematics student became his lover. Meanwhile, other computer projects took the lead and in June 1948 Manchester University, behind Max Newman’s effort, had the world’s first practical demonstration of Turing’s computer principle.

In May 1948, Turing accepted the post of Deputy Director of the computing laboratory at Manchester University, offered by Newman. Turing’s only role there was as the organiser of programming. His ideas about the use of mathematical logic for program checking, and his huge knowledge of statistical methods, could perhaps have led to software development. But that did not happen. Instead, Turing revisited old mathematics topics like the calculation of the Riemann zetafunction with the use of the prototype computer, or studied new topics like the question of computability within the algebra of group theory.

In 1950 Turing published Computing machinery and intelligence (PDF), another impressive work, foreseeing questions which today lie at the heart of artificial intelligence. In this paper, he proposed the Turing Test, which is still the test to apply in attempting to answer whether a computer can be intelligent.

More New Knowledge

At the same time, from his brilliant mind emerged new thought: the theory of growth and form in biology, which he called the Mathematical Theory of Morphogenesis. Turing gave an original answer to the question of how asymmetry can arise out of initially symmetric conditions: from the nonlinearity of the chemical equations of reaction and diffusion. He also used for the first time an electronic computer for mathematical research to test his ideas. He was elected to a Fellowship of the Royal Society in July 1951, for the work on Turing machines in 1936, mainly. His first successful work on The Chemical Basis of Morphogenesis (PDF) was submitted as a paper that November; although it was long ignored, it is a founding paper of modern non-linear dynamical theory.

Death, Works and Life of a Great Man

Alan Turing was arrested and came to trial on March 31st, 1952, for violation of British homosexuality statutes. He made no serious defence, instead expressing that he saw no wrong with his actions. Rather than going to prison, he accepted, for the period of a year, injections of oestrogen intended to neutralise his libido. Besides this, his work on the morphogenetic theory continued and he refreshed his youthful interest in quantum physics. A factor in his life unknown to most around him was that he had also continued to work for GCHQ, the post-war British intelligence agency successor to Bletchley Park. But since 1948, with the Cold War, homosexuals had become ineligible for security enablement. Turing was, therefore, excluded. He died on June 7th, 1954, of cyanide poisoning. The coroner’s verdict was suicide.

Much of Turing’s work was never formally published in a scientific journal. There are many internal reports, unfinished work completed by others, typescripts of talks, and papers which were never intended for publication, being top secret at the time of their composition and for long afterwards. The collected works of Alan Turing did not appear until 1992, published by North-Holland and consisting of 4 volumes: (1) Mechanical Intelligence, (2) Morphogenesis, (3) Pure Mathematics, and (4) Mathematical Logic. Almost everything Turing wrote is now accessible online in the Turing Digital Archive (http://www.turingarchive.org/), which makes available scanned versions of the physical papers held in the archive at King’s College, Cambridge University. His full scientific biography is Alan Turing: the enigma, by Andrew Hodges.

Celebrations and News

2012 was the Alan Turing year, the well-known centenary celebration of his life and work. In 2013 we are happy to announce, as a part of the 15 years celebration of our Computer Science, Multimedia and Telecommunication Department of the UOC, the birth of the URV-UOC online University Master’s Degree in Computer Engineering and Mathematics which represents the essence of the topic that Turing inaugurated.


M. Antonia Huertas

She holds a PhD in Mathematics, focused in Mathematical Logic, by the University of Barcelona (UB). She’s Bachelor in Mathematics from the University of Barcelona and in Humanities from the Open University of Catalonia (UOC). She’s lecturer at the Department of Computer Science, Multimedia and Telecommunication at UOC. She focuses her research on Logic and Mathematical e-Learning.

Publicat dins de Uncategorized | Comentaris tancats a Alan Turing: a too short biography for such great man

ATI a la Història de la Informàtica a Catalunya i Espanya

[ir a la versión en Castellano]

El proper dimecres 03 de juliol, a les 12:00 i a la nostra seu de l’Av. Tibidabo, tindrà lloc la quarta taula rodona del cicle Historia de la Informàtica a Catalunya i Espanya, que ja hem presentat en una entrada anterior, i que es centrarà en la creació d’ATI.

Els informàtics dels anys 60 i 70, alhora que descobrien i definien una nova disciplina, també es van trobar amb molts reptes laborals, educatius i professionals. A Catalunya i a Espanya, a més, les circumstàncies socials eren d’allò més complicades, amb una dictadura agònica que va donar pas a una transició democràtica plena d’incerteses.

En aquest context, els informàtics catalans van decidir constituïr una organització professional per a ajudar-se mútuament en l’aspecte laboral, i per a donar a conèixer la seva disciplina socialment: la Associació de Tècnics en Informàtica (ATI). Fa més de quaranta anys d’això, durant els quals ATI ha estat un dels pals de paller dels informàtics, primer a Catalunya i després per la resta de l’estat espanyol.

La majoria dels nostres informàtics més sènior han participat, de formes i en moments diversos, amb ATI. A més d’esdeveniments professionals i acadèmics, i accions formatives de tota mena, ATI ha publicat la seva revista NOVATICA, la revista degana de la professió informàtica on han publicat i publiquen informàtics de tots els àmbits i disciplines. A més, ATI ha estat des dels seus inicis el canal de relacions internacionals associatiu dels informàtics de casa nostra.

Si voleu conèixer el contexte i motivacions que van donar lloc a la fundació d’ATI, així com la seva evolució històrica i situació actual, veniu a la quarta taula rodona del Cicle d’Historia de la Informàtica a Catalunya i Espanya.

Els ponents seran:

Ramon Companys, Primer president d’ATI

Dídac López, Actual president d’ATI, Director d’informàtica UdG

Miquel Sàrries, Ex-secretari de juntes directives d’ATI

Moderarà: Ramon Puigjaner, Vice-President de l’IFIP

I, un cop més, si voleu una visita guiada a l’exposició “FeliciTICS 15·35·1”, on s’exhibeixen 35 antecedents de les TIC “abans de les TIC”, podeu assistir al mateix lloc de la taula rodona, una hora abans

—————————————————————————————————————————————-

El próximo miércoles 3 de julio, a las 12:00 y en nuestra sede de la Av.. Tibidabo, tendrá lugar la cuarta mesa redonda del ciclo Historia de la Informática en Catalunya y España, que ya hemos presentado en una entrada anterior, y que se centrará en la creación de ATI.

Los informáticos de los años 60 y 70, a la vez que descubrían y definían una nueva disciplina, también se encontraron con muchos retos laborales, educativos y profesionales. En Cataluña y en España, además, las circunstancias sociales eran de lo más complicadas, con una dictadura agónica que daría paso a una transición democrática llena de incertidumbres.

En este contexto, los informáticos catalanes decidieron constituir una organización profesional para ayudarse mutuamente en el aspecto laboral, y para dar a conocer su disciplina socialmente: la Asociación de Técnicos en Informática (ATI). Hace más de cuarenta años de ello, durante los cuales ATI ha sido uno de los ejes principales de los informáticos, primero en Cataluña y después en el resto de España.

La mayoría de nuestros informáticos más sénior han participado, de diversas formas y en diferentes momentos, con ATI. Además de eventos profesionales y académicos, y de acciones formativas de todo tipo, ATI publica su revista Novática, que es la revista decana de la profesión informática donde  han publicado y publican informáticos de todos los ámbitos y disciplinas. Además, ATI ha sido desde sus inicios el canal de relaciones internacionales asociativo de los informáticos de nuestra casa.

Si deseas conocer el contexto y motivaciones que dieron lugar a la fundación de ATI, así como su evolución histórica y situación actual, ven a la cuarta mesa redonda del Ciclo de Historia de la Informática en Catalunya y España.

Los ponentes serán:

Ramon Companys, Primer presidente de ATI

Dídac López, Actual presidente de ATI, Director de informàtica UdG

Miquel Sàrries, Ex-secretario de juntas directivas de ATI

Moderará: Ramon Puigjaner, Vice-Presidente de l’IFIP

Y si quieres una visita guiada a la exposición “FeliciTICS 15·35·1”, donde se exhiben 35 antecedentes de las TIC “antes de las TIC”, podéis disfrutarla en el mismo lugar de la mesa redonda, una hora antes.

Publicat dins de Uncategorized | Deixa un comentari

EIMTquest, las pruebas

[ir a la versión en castellano]

Vam prometre que tindríeu les respostes, i aquí les teniu :-).

El primer dia començava amb hackathon.uoc.edu/EIMTquest/EIMTqueststartshere/. Una petita passejada per UOC.edu us hauria d’haver portat a la resposta correcta: 3, 186, 126 i 216 i a accedir a la segona prova, a hackathon.uoc.edu/EIMTquest/3186126216/. Calia una mica de paciència, però la resposta portava a hackathon.uoc.edu/EIMTquest/00010111011101110011100110000111000101110011/ (sí, la resposta incloïa uns quants zeros a l’inici, però és tradicional convertir cada caràcter hexadecimal a un binari de quatre xifres, i aquest és el format que vam triar). Us va costar gaire localitzar informació per llegir resistències? La resposta correcta portava a hackathon.uoc.edu/EIMTquest/100K10K1K470220/.

La segona tanda de proves començava a hackathon.uoc.edu/EIMTquest/EIMTquestd2/. Una mica de paciència i la resposta va arribar sola:

…i vau poder accedir a hackathon.uoc.edu/EIMTquest/standingontheshouldersofgiants/. Amb una mica de feina (no pas tanta!) podíeu arribar a l’article de Mosaic, localitzar la foto, veure el QR, modificar-la una mica perquè fos legible amb un lector de codis i arribar a la següent prova del dia, a hackathon.uoc.edu/EIMTquest/31CeJuCa02/. Quin ensurt de pàgina, oi? Però la pista us hauria d’haver dut a alguna llista de llenguatges de programació “ofuscats”, entre els que hi ha el Brainfuck, i segurament vau localitzar algun intèrpret a la web, com ara brainfuck.tk i, si vau tenir la vista de passar el codi per l’intèrpret dos cops, vau obtenir la pista final del dia i vau arribar a hackathon.uoc.edu/EIMTquest/brainfuckEIMTbrainfuck/.

Saltem a la primera prova del tercer dia, http://hackathon.uoc.edu/EIMTquest/thirdday/. Les nostres primeres enginyeries es van aprovar en el BOE del 14 de febrer de 1997, i entre aquesta data i el 12 de juny, el dia de la prova, hi ha 5962 dies. Així doncs, la següent pista estava a hackathon.uoc.edu/EIMTquest/5962/. Una feinada, oi? Ho vau fer “a ma” o “a màquina”? En qualsevol cas, la solució us portava a hackathon.uoc.edu/EIMTquest/trcoctdoscostruccocoputdorscrptolststlcouccos/. Què vau fer? Analitzar les freqüències de cada caràcter? Suposar que no podia ser molt difícil i provar en alguna de les moltes webs que corren per internet totes les possibilitats del criptosistema César (no són tantes, al cap i a la fi)? En qualsevol cas, no podíeu trigar tant a arribar a la solució, que era, precisament, “cryptosystems”.

La primera prova de dijous estava a hackathon.uoc.edu/EIMTquest/2more2go/. Si la vau encertar a la primera, probablement la prova més fàcil i ràpida de resoldre de tota l’EIMTquest: només calia ‘veure el codi font de la pàgina’ i fixar-s’hi una mica per veure que la següent prova estava a http://hackathon.uoc.edu/EIMTquest/HidingCodes4FUN/. Descarregar la foto, mirar-ne les metadades, trobar la geolocalització (42 graus i escaig nord, 1 i una mica est) i arribar a hackathon.uoc.edu/EIMTquest/425476461549971/… Us hi vau entretenir molt? Vau, potser, provar de trobar la solució sense jugar, en el codi font en Processing? Fos com fos, el darrer codi del dia duia a hackathon.uoc.edu/EIMTquest/EIMT15logo21974145/.

El darrer dia començava a hackathon.uoc.edu/EIMTquest/finalcountdown/. Com us dèiem a l’enunciat, si el dia anterior havíeu estat capaços de trobar la geolocalització, a banda de trobar les dades de la foto (f4.5, 1/13 d’exposició), vau veure la geolocalització de la foto, i amb relativament poca feina vau arribar a veure que estava feta a Bletchley Park, veure que es tractava d’una ‘bombe’ i arribar a hackathon.uoc.edu/EIMTquest/bombe45113/ (per cert: si haguéssiu buscat el nom d’arxiu de la foto, igual us haguéssiu estalviat part de la feina). Números triangulars… Si vau buscar a la Wikipedia en anglès hauríeu trobat el A000217 en un tres i no res… desafortunadament, si vau buscar en català o castellà, vau tenir una mica més de feina. I el darrer número a calcular era una mica massa llarg per una calculadora convencional. Com us vau fer? En qualsevol cas, la resposta correcta portava a hackathon.uoc.edu/EIMTquest/A000217T347357071281165/ i a una pregunta que podia ser molt fàcil si ho havíeu fet tot… o molt difícil en qualsevol altre cas: 106212535Nksss.

Què, us ho heu passat bé? Repetim l’any que ve?


[anar a la versió en català]

Prometimos que tendríais las respuestas… y aquí las tenéis :-).

El primer día comenzaba con hackathon.uoc.edu/EIMTquest/EIMTqueststartshere/. Un pequeño paseo por UOC.edu os debería haber llevado a la respuesta correcta: 3, 186, 126 y 216, y a acceder a la segunda prueba, en hackathon.uoc.edu/EIMTquest/3186126216/. Hacía falta un poco de paciencia, pero la respuesta llevaba a hackathon.uoc.edu/EIMTquest/00010111011101110011100110000111000101110011/ (sí, la respuesta incluía unos cuantos ceros al inicio, pero es tradicional convertir cada carácter hexadecimal a un binario de cuatro cifras, y este es el formato que elegimos). ¿Os costó mucho localizar información para leer resistencias? La respuesta correcta llevaba a hackathon.uoc.edu/EIMTquest/100K10K1K470220/.

La segunda tanda de pruebas comenzaba en hackathon.uoc.edu/EIMTquest/EIMTquestd2/. Un poco de paciencia y la respuesta llegó sola:

…y pudisteis acceder a hackathon.uoc.edu/EIMTquest/standingontheshouldersofgiants/. Con un poco de trabajo (¡no tanto!) podíais llegar al artículo de Mosaic, localizar la foto, ver el QR, modificar la imagen un poco para que fuera legible con un lector de códigos y llegar a la siguiente prueba del día, en hackathon.uoc.edu/EIMTquest/31CeJuCa02/. Qué susto de página, ¿verdad? Pero la pista os debería haber llevado a alguna lista de lenguajes de programación “ofuscados”, entre los que está Brainfuck, y seguramente localizaisteis algún intérprete en la web, como brainfuck.tk y, si tuvisteis la vista de pasar el código por el intérprete un par de veces, obtuvisteis la pista final del día y llegasteis a hackathon.uoc.edu/EIMTquest/brainfuckEIMTbrainfuck/.

Saltamos a la primera prueba del tercer día, http://hackathon.uoc.edu/EIMTquest/thirdday/. Nuestras primeras ingenierías se aprobaron en el BOE del 14 de febrero de 1997, y entre esa fecha y el 12 de junio, el día de la prueba, hay 5962 días. Así pues, la siguiente pista estaba en hackathon.uoc.edu/EIMTquest/5962/. Mucho trabajo, ¿verdad? ¿Lo hicisteis “a mano” o “a máquina”? En cualquier caso, la solución llevaba a hackathon.uoc.edu/EIMTquest/trcoctdoscostruccocoputdorscrptolststlcouccos/. ¿Qué hicisteis? ¿Analizar las frecuencias de cada carácter? ¿Suponer que no podía ser muy difícil y probar en alguna de las muchas webs que corren por internet todas las posibilidades del criptosistema César (no son tantas, al fin y al cabo)? En cualquier caso, no podíais tardar tanto en llegar a la solución, que era, precisamente, “cryptosystems”.

La primera prueba del jueves estaba en hackathon.uoc.edu/EIMTquest/2more2go/. Si la acertasteis a la primera, probablemente la prueba más fácil y rápida de resolver de toda la EIMTquest: bastaba con ‘ver el código fuente de la página’ y fijarse un poco para ver que la siguiente prueba estaba en hackathon.uoc.edu/EIMTquest/HidingCodes4FUN/. Descargar la foto, mirar los metadatos, encontrar la geolocalización (42 grados y pico norte, 1 y algo este) y llegar a hackathon.uoc.edu/EIMTquest/425476461549971/ …¿ Os entretuvisteis mucho? ¿Intentásteis, quizás, encontrar la solución sin jugar, en el código fuente en Processing? Sea como fuere, el último código del día llevaba a hackathon.uoc.edu/EIMTquest/EIMT15logo21974145/.

El último día comenzaba en hackathon.uoc.edu/EIMTquest/finalcountdown/. Como os decíamos en el enunciado, si el día anterior habíais sido capaces de encontrar la geolocalización, aparte de encontrar los datos de la foto (f4.5, 1/13 de exposición), visteis la geolocalización de la foto, y con relativamente poco trabajo llegasteis a ver que estaba hecha en Bletchley Park, visteis que se trataba de una ‘bombe’ y llegasteis a hackathon.uoc.edu/EIMTquest/bombe45113/ (por cierto: si hubierais buscado el nombre de archivo de la foto, igual os hubieseis ahorrado parte del trabajo). Números triangulares… Si buscasteis en la Wikipedia en inglés encontrasteis A000217 en un santiamén… desafortunadamente, si buscasteis en catalán o castellano, tuvisteis un poco más de trabajo. Y el último número a calcular era un poco demasiado largo para una calculadora convencional. ¿Cómo lo hicisteis? En cualquier caso, la respuesta correcta llevaba a hackathon.uoc.edu/EIMTquest/A000217T347357071281165/ y a una pregunta que podía ser muy fácil si lo habíais hecho todo … o muy difícil en cualquier otro caso: 106212535Nksss.

¿Qué, os lo habéis pasado bien? ¿Repetimos el año que viene?

Publicat dins de Uncategorized | Etiquetat com a | 3 comentaris

EIMTquest, los resultados

[ir a la versión en castellano]

Imaginem que, després d’uns dies de descans, voldreu saber els resultats de l’EIMTquest. Aquí sota trobareu les puntuacions dels cinc primers qualificats. Si hi vau participar, no apareixeu a la llista i voleu conèixer la vostra puntuació, no dubteu a escriure a l’adreça de correu del concurs (hores d’ara ja us l’hauríeu de saber de memòria :-)) i us la farem arribar.

I en uns dies farem públics també tots els enigmes que vam plantejar i la solució de cada un d’ells.


[anar a la versió en català]

Imaginamos que, tras unos días de descanso, querréis saber los resultados de la EIMTquest. A continuación encontraréis las puntuaciones de los cinco primeros clasificados. Si participasteis, no aparecéis en la lista y queréis conocer vuestra puntuación, no dudéis en escribir a la dirección de correo del concurso (a estas alturas os la deberíais saber de memoria :-)) y os la haremos llegar.

Y en unos días haremos públicos también todos los enigmas planteados y la solución de cada uno de ellos.


Participante Puntuación
Miguel Ángel García Puertas 15,338
Elisabet Martín i Palomas 14,751
Manu Garcia Molina 10,998
Alexis Gutiérrez Mercader 10,003
Xavi Garcia Sierra 8,404
Publicat dins de Uncategorized | Etiquetat com a | Deixa un comentari

EIMTquest, día 5

[ir a la versión en castellano]

Va, que ja gairebé hi sou. Només tres proves us separen del final de l’EIMTquest. La primera d’elles la trobareu a hackathon.uoc.edu/EIMTquest/finalcountdown/. Recordeu, com sempre, que teniu les regles a hackathon.uoc.edu/EIMTquest/basescah. Ànims!


[anar a la versió en català]

Va, que ya casi estáis. Tan solo tres pruebas os separan del final de la EIMTquest. La primera de ellas la encontraréis en hackathon.uoc.edu/EIMTquest/finalcountdown/. Recordad, como siempre, que tenéis las reglas en hackathon.uoc.edu/EIMTquest/basesesh. ¡Ánimos!

Publicat dins de Uncategorized | Etiquetat com a | Deixa un comentari

EIMTquest, día 4

[ir a la versión en castellano]

Només queden sis proves per acabar l’EIMTquest. No us entretenim massa, que imaginem que voleu anar per feina. La primera prova del dia la trobareu a hackathon.uoc.edu/EIMTquest/2more2go/. Recordeu, com sempre, que teniu les regles a hackathon.uoc.edu/EIMTquest/basescah. Ànims!


[anar a la versió en català]

Sólo quedan seis pruebas para acabar la EIMTquest. No os entretenemos, que imaginamos que queréis ir al grano. La primera prueba del día la encontraréis en hackathon.uoc.edu/EIMTquest/2more2go/. Recordad, como siempre, que tenéis las reglas en hackathon.uoc.edu/EIMTquest/basesesh. ¡Ánimos!

Publicat dins de Uncategorized | Deixa un comentari

EIMTquest, día 3

[ir a la versión en castellano]

Avui arribem al tercer dia de l’EIMTquest, la gimcana virtual del nostre 15è aniversari. Si encara no us hi heu apuntat, més val que correu, abans no se us escapi el tren. La primera prova del dia la trobareu a hackathon.uoc.edu/EIMTquest/thirdday. Recordeu, com sempre, que teniu les regles a hackathon.uoc.edu/EIMTquest/basescah. Ànims!


[anar a la versió en català]

Hoy llegamos al tercer día de la EIMTquest, la gimcana virtual de nuestro 15º aniversario. Si aún no os habéis apuntado, más vale que os deis prisa, antes de que se os escape el tren. La primera prueba del día la encontraréis en hackathon.uoc.edu/EIMTquest/thirdday. Recordad, como siempre, que tenéis las reglas en hackathon.uoc.edu/EIMTquest/basesesh. ¡Ánimos!

Publicat dins de Uncategorized | Etiquetat com a | Deixa un comentari

EIMTquest, día 2

[ir a la versión en castellano]

Segon dia de l’EIMTquest, la nostra gimcana virtual. Tant si hi vau participar ahir com si no vau poder i us hi enganxeu avui (encara esteu a temps, queden molts punts en joc :-)), trobareu la primera prova del dia a hackathon.uoc.edu/EIMTquest/EIMTquestd2. Recordeu que teniu les regles a hackathon.uoc.edu/EIMTquest/basescah. Molta sort!


[anar a la versió en català]

Segundo día de EIMTquest, nuestra gimcana virtual. Tanto si participasteis ayer como si no pudisteis y os apuntáis hoy (aun estáis a tiempo, quedan muchos puntos en juego :-)), encontraréis la primera prueba del día en hackathon.uoc.edu/EIMTquest/EIMTquestd2. Os recordamos que encontraréis las reglas en hackathon.uoc.edu/EIMTquest/basesesh. ¡Buena suerte!

Publicat dins de Uncategorized | Etiquetat com a | Deixa un comentari

EIMTquest, día 1

[ir a la versión en castellano]

Dilluns, 10 de juny, i com ja us havíem comentat, dóna inici EIMTquest, la gimcana virtual de la celebració del 15è aniversari dels EIMT. Per tal d’accedir a la primera de les proves d’avui només heu de seguir l’enllaç a hackathon.uoc.edu/EIMTquest/EIMTqueststartshere. Us recordem que trobareu les regles del joc a hackathon.uoc.edu/EIMTquest/basescah. Bona sort!


[anar a la versió en català]

Lunes, 10 de junio y, como habíamos comentado, damos inicio a EIMTquest, la gimcana virtual de la celebración del 15º aniversario de los EIMT. Para acceder a la primera de las pruebas de hoy sólo tenéis que seguir el enlace a hackathon.uoc.edu/EIMTquest/EIMTqueststartshere. Os recordamos que encontraréis las reglas en hackathon.uoc.edu/EIMTquest/basesesh. ¡Buena suerte!

Publicat dins de Uncategorized | Etiquetat com a | Deixa un comentari